The Influence of Gene Polymorphisms on Tobacco and Alcohol-Induced Oral Cancer RisK

Otávio A. Curioni, Marcos B. de Carvalho, Rogério A. Dedivitis, Abrão Rapoport, Gilka J. F. Gattas

Aims: This study examined whether genetic polymorphisms of tobacco and alcohol-related metabolic genes such as GSTM1, GSTT1, GSTP1, CYP1A1, CYP2E1 and DNA repair genes (XRCC1 194Trp, XRCC1 399Gln, andXRCC3 Met) contribute to the risk of developing OSCC.
Methods: Patients eligible for inclusion were over 18 years, had pathologically confirmed OSCC and were followed prospectively for at least two years or until death, from December 2000 to December 2004. Ninety-two OSCC patients were included along with 244 subjects from the same hospital, evaluated in the same period as patients without cancer, as the control group.
Results: GSTM1 null and XRCC1-194Trp alone increased the risk of OSCC (OR, 2.15; 95% CI, 1.2 – 3.6 and OR, 2.02; 95% CI, 1.01 – 4.03, respectively). The joint effect of GSTM1 null with CYP1A1 or CYP2E1 polymorphism increased the risk two to threefold. Similar results were observed when XRCC1-194Trp was combined with GSTM1 null or the CYP2E1 polymorphism. By contrast, XRCC1- 399Gln was associated with protection against OSCC. Gene-gene and gene-environmental interactions were mainly detected for CYP1A1 andGSTP1 associated with more than 20 p/y of tobacco and XRCC1-194Trp when more than 30 g/L/d of alcohol was consumed (OR, 8.8; 95% CI; 1.3 – 45.7).
Conclusions: The drug metabolizing and DNA repair enzyme polymorphisms may be informative for clinicians in the preventive management of patients at risk, particularly those with strong smoking and drinking habits.

Background: Scoliosis is a common condition in adult patients, and often causes chronic back pain compared to non-scoliosis. It has also been identified that bone mineral density is very often compromised in patients with scoliosis, even occurring in adolescence. At this time, no study has looked at how bone mineral density and scoliosis incidence or severity may be connected with specific regard to treatment. This study presents data on the outcomes of a scoliosis-specific exercise therapy and its ability to correct scoliotic curvatures in adult patients alone and in combination with bone mineral density supplementation. Methods: The charts of 14 total patients were retrospectively selected based upon specific inclusion criteria. Outcome assessments included the radiographic Cobb angle of the primary curvature, as well as laboratory measures of urinary deoxypyridinoline cross links. These results were compared against 12 patients who did not take the bone density supplement during or after their exercise-based treatment. Results: Patients taking the bone density supplement achieved the same level of Cobb angle reduction as compared to the control group. However, they additionally achieved a significant reduction in urinary deoxypyridinoline cross links as compared to the control group at 6 months. Conclusion: Patients taking a multi-ingredient bone density supplement daily for 6 months after completing a scoliosis-specific exercise program reported statistically significant improvements in urinary deoxypyridinoline cross links as compared to controls. It is unknown if or how bone density loss may contribute to the onset or progression of scoliosis. Long-term follow-up of these patients will be ongoing to assess bone mineral density status and Cobb angle changes longitudinally.


Over To You

Back to Top
Translate »